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Abstract

To understand the impact of new pricing structure on residential electricity demands, we
need a baseline model that captures every factor other than the new price. The standard
baseline is a randomized control group, however, a good control group is hard to design.
This motivates us to develop data-driven approaches. We explored many techniques and
designed a strategy, named LTAP, that could predict the hourly usage years ahead. The key
challenge in this process is that the daily cycle of electricity demand peaks a few hours after
the temperature reaching its peak. Existing methods rely on the lagged variables of recent
past usages to enforce this daily cycle. These methods have trouble making predictions
years ahead. LTAP avoids this trouble by assuming the daily usage profile is determined by
temperature and other factors. In a comparison against a well-designed control group,
LTAP is found to produce accurate predictions.



1 Introduction

With measurements recorded for most customers in a service territory at hourly or more
frequent intervals, advanced metering infrastructure (AMI) captures electricity
consumption in unprecedented spatial and temporal detail. This vast and fast growing
stream of data, together with cutting-edge data science techniques and behavioral theories,
enables behavior analytics: novel insights into patterns of electricity consumption and their
underlying drivers [Costa and Kahn, 2013, Todd et al., 2014].

As electricity cannot be easily stored, electricity generation must match consumption.
When the demand exceeds the generation capacity, a blackout would occur, typically
during the time when consumers need electricity the most [Joskow, 2001, Wolak, 2003].
Because increasing generation capacity is expensive and requires years of time to
implement, regulators and utility companies have devised a number of pricing schemes
intended to discourage unnecessary consumption during peak demand periods.

To measure the effectiveness of a pricing policy on the peak demand, one can analyze
electricity usage data generated from AMI. Our work focuses on extracting baseline models
of household electricity usage for a behavior analytics study [Cappers et al., 2013, Costa
and Kahn, 2013, Todd et al., 2014]. The baseline models would ideally capture the pattern
of household electricity usage including all features except the new pricing schemes. There
are numerous challenges in establishing such a model. For example, there are many
features that could affect the usage of electricity, and many of these features, such as the
purchase of new equipment, is information not available to us. Other features, such as
outdoor temperature, are known; but their impact is difficult to capture in simple
functions.

Although this work shares some similarities with works on forecasting electricity demands
and prices [Suganthi and Samuel, 2012, Bianco et al., 2009, Taylor and McSharry, 2007],
there are a number of important differences. The fundamental difference between a
baseline model and a forecast model is that the baseline model needs to capture the core
behavior that persist for a long time, while the forecast model typically aims to forecast for
the next few cycles of the time series in question. Typically, techniques that make forecasts
for years into the future are based on highly aggregated time series with month or year as
time steps [Al- fares and Nazeeruddin, 2002, Bianco et al., 2009], whereas those that work
on time series with shorter time steps typically focus on making forecasts for the next day
or the next few hours [Cottet and Smith, 2003, Oldewurtel et al., 2010, Panagiotelis and
Smith, 2008, Taylor, 2010].

In the specific case that has motivated our work, the overall objective is to study the
impacts of pricing policies. The process of designing these pricing schemes, recruiting
participants for a pilot study, implementing the pricing schemes, and monitoring the
impacts have taken a few years. The baseline model is based on observed consumption
prior to the implementation of the new pricing schemes, and applied to predict what
consumer behavior would have been without the pricing changes. This is challenging



because the baseline model not only captures intraday electricity usage but also needs to
be applicable for years. Furthermore, in preliminary tests, we have noticed that the impact
of the pricing schemes is weaker than the impact of other factors such as temperature,
therefore, the baseline model must be able to incorporate the outdoor temperature, which
has a complex relationship with the electricity demand.

This work examines a number of methods for developing the baseline models that could
satisfy the above requirements. We use a large set of AMI data to exercise these methods
and evaluate their relative strengths. The bulk of data in this work is hourly electricity
usage from randomly chosen samples of households from a region of the US where the
electricity usage is highest in the afternoon and evening during the months of May through
August. The current work extracts the baseline models for average behavior of different
customer groups, not behavior specific to any individual household.

In the remainder of this paper, we briefly present the background and related work in
Section 2 and describe the residential electricity usage data used in this study in Section 3.
We also present some analysis with conventional statistical methods in Section 3. We
describe the methods used to extract the new type baseline in Section 4 and discuss the
output from these methods in Sections 5 and 6. A short summary is provided in Section 7.

2 Application Driver

Energy management has become an important problem all around the world. The recent
deployment of residential AMI makes hourly electricity consumption data available for
research, which offers a unique opportunity to understand the electricity usage patterns of
households. In particular, understanding how and when households use electricity is
essential to regulators for increasing the efficiency of power distribution networks and
enabling appropriate electricity pricing. One concrete objective from several current
pricing studies is to design new rules and structures to reduce the peak demand and
therefore level out total electricity usage [Espey and Espey, 2004, Todd et al., 2014].

The influx of massive amounts of electricity data from AMI has led to a variety of research
on energy behavior such as electricity consumption segmentation [Chicco et al., 2004,
Figueiredo et al., 2005, Verdu et al., 2006, Chicco et al., 2006, Tsekouras et al., 2007, Smith
etal., 2012, Kwac et al., 2014], forecasting and load profiling [Espinoza et al., 2005, Irwin et
al,, 1986, Flath et al., 2012], and targeting customers for an air-conditioning demand
response program to maximize the likelihood of savings [Kwac and Rajagopal, 2013].

An important tool for this problem is classifying and representing different households
with different load profiles [Capasso et al., 1994, Flath et al.,, 2012, Kwac et al., 2014].
Accurately identifying the load profiles will allow the researchers to associate observed
electricity usage with consumer energy behavior. Load profiling could identify policy
relevant energy lifestyle segmentation strategies, which can lead to better energy policy,
improve program effectiveness, increase the accuracy of load forecasting, and create better
program evaluation methods [Kwac et al., 2014].



Accurate prediction or load forecasting of electricity usage is very important for the
industry [Nogales et al., 2002, Ramchurn et al., 2012]. For example, long-term usage
forecasting for more than one year ahead is important for capacity planning and
infrastructure investments. Short-term forecasting is used in the day- ahead electricity
market, determining available demand response, and increasing demand side flexibility.
We can broadly divide these forecasting techniques into black-box techniques and white-
box techniques. The black-box approaches focus on what could be extracted from data,
typically based on statistical and machine learning methods [Alfares and Nazeeruddin,
2002, Edwards et al,, 2012, Espinoza et al., 2005, Irwin et al., 1986, Nogales et al., 2002,
Ramchurn et al,, 2012, Swan and Ugursal, 2009]. For example, some authors prefer
supervised machine learning methods such as support vector machines [Chen et al., 2004,
Humeau et al., 2013], some use statistical models such as dynamic regression [Nogales et
al,, 2002], while others advocate for neural networks and artificial intelligence approaches
[Ramchurn et al., 2012]. Typically, these methods transform the time series of historical
data into a time scale such that the predictions are made for the next time step or the next
few time steps.

White-box approaches are typically based on some understanding of the relationship
between some cause and its direct effect. For example, because increased outdoor
temperature leads to increased indoor temperature, which in turn leads people to turn on
their air conditioners, one might come up with a model relating outdoor temperature and
electricity usage, and then try to fit the parameters of the model using the observed data.
However, such a model most likely would not be able to capture all relevant features,
because some of the features, such as length of the day, have weak or unclear effect on
electricity usage, and others, such as number of occupants in the building, clearly affect the
electricity usage but their values are unknown or their impact on electricity usage is
multifaceted or unknown [Borgeson, 2014, Fels, 1986, Rabl and Rialhe, 1992]. For this
reason, many researchers refer to these models as “gray-box” models because these models
always contain a certain amount of unexplained features left as “errors.”

Household electricity usage depends on many features beyond what was mentioned above,
for example, appliances in the house, the energy behavior of the occupants, the time of day,
day of the week, seasons, and so on [Cappers et al., 2013, Todd et al., 2012]. Some of the
existing prediction models focus on aggregated demand and therefore could parameterize
many factors affecting the usage of an individual household [Swan and Ugursal, 2009].
From the study of earlier models, we learned that a household’s electricity usage is strongly
periodic, in that the daily electricity usage repeats every day and every week. Given any
two consecutive days, their usage patterns are very similar to each other; given any two
consecutive weeks, their electricity uses are also similar to each other. Throughout a year,
the overall electricity usage follows the pattern of seasonal temperature change. To
accurately predict electricity usage, we need to capture all these factors in our own models.



3 Dataset

Our electricity usage data was collected through a well-designed randomized control trial
[Cappers et al., 2013]. It has hourly electricity consumption records of individual
households for three years. The unit of electricity is in kilowatt-hour (KWh). The total
number of hourly data points is 160,125,432, from which we focus on data generated
during the summers, which accounts for most of electricity usage (from June 1 to August
31), yielding 41,698,080 data records. The data records from three years are labeled by (T
-1, T, T+ 1), where year T - 1 corresponds to the year when the electricity has a fixed
price throughout the day, and the new prices are used in year Tand T + 1.

3.1 Groups

The households involved in this study are divided into a number of different groups, in this
work, we only use three of them, the Control group, the Passive group and the Active group.
1Following the general design of a randomized control trial, the Control group is a random
selected set of households that are meant to be used as the baseline [Costa and Kahn, 2013,
Concato et al., 2000]. In later discussion, this group is labeled as Control. This control group
is unaware of the study and stays with the previously available fixed-price scheme
throughout the testing period.2 The other two groups are generally referred to as the
treatment group.

The treatment groups use a time-based price, where during the peak-usage hours, 3PM to
7PM in the region of this study, the per KWh charge is higher than the rest of the day. In the
Active group, households have to opt in to the new pricing scheme offered. While the
households in the Passive group are informed of their participation in the new price trial
and offered a chance to opt out of the trial.

As in a typically consumer behavior study, the response rate of the households invited to
participate in the new price trial, only a small fraction of the invitees actually opted in. To
avoid the imbalance among the three groups, we randomly selected about 1600 households
from each of the three groups. We dropped households that do not have measurement data
for the whole duration of the study. The number of households dropped is relatively small.

1In this study we use the terms Active and Passive as a short hand for these groups. The term Active corresponds to what
is more conventionally referred to as “voluntary” or “opt-in,” meaning that the households in this group were encouraged
to join the time-based rate and actively opted in to the treatment group experiencing the time-based rates. The term
Passive corresponds to what is more conventionally referred to as “default” or “opt-out,” meaning that the households in
this group were defaulted on to the treatment time-based rate, but had the option to opt out.

2 There was an adjustment of the actual prices of the fixed-price scheme. The standard fixed-price scheme typically has a
base charge per month and an additional per KWh charge based on the actual usage, where this per KWh charge is
generally known as the rate. Early in year T+1, before the summer, there was an increase in the base charge and decrease
in the rate. This price change might encourage households to consume more electricity since the incremental cost has
gone down.



3.2 Overall statistics

Fig. 1 shows the average daily electricity usages of three groups over three summer
seasons. The data from each of the three years are plotted as a separate line. We note that
even though different pricing schemes are used, the impact of the pricing schemes is not
obvious. This can be partially explained by Fig. 2, where average hour temperatures and
electricity usages are plotted against hour.
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Figure 1: Daily electricity usages of three groups for year (T -1, T, T + 1).



In Fig. 2, the temperatures of T and T + 1 are higher than the temperature of T - 1, which
means households have experienced hotter summers in T and T + 1. As a result, the
electricity usage increases in T and T +1. Even though the new pricing schemes are
designed to reduce electricity usage, but the increases in temperature complicates the
analysis. Furthermore, the impact of temperature on electricity usage does not appear to be
instantaneous; but its impact on electricity usage appears a few hours later. The increased
electricity usage during the summer afternoon is mostly from air conditioning, which is
more directly related to the indoor temperature, while the temperature reported in our
dataset is outdoor temperature. It takes time for the increased outdoor temperature to
impact the indoor temperature. Additionally, residents of a house typically return from
work in late afternoon, which increase the number of occupants in a household. Because
there is no obvious differences from Figs. 1 and 2, we conclude that the influence of
common features such as season, outdoor temperature, day of the week and so on are
much stronger than the features that distinguish the groups. This means the baseline
models have to be very accurate in order to recognize the different groups. We will discuss
these methods carefully in Section 4.

Temperature (°F)
Hourly averaged electricity usage (kWh)

Time (hour)

Figure 2: Hourly temperatures (triangle markers) and electricity usages (square markers) for
(T-1,T, T+1). Note the time lags between the peaks of temperatures and the peaks of
electricity usages, which should be taken into consideration when we express a baseline usage
model with outdoor temperatures. The temperatures of T and T + 1 are higher than that of T
- 1, which results in the higher electricity usagesin T and T +1.



Table 1: The hourly electricity usages for three groups averaged over all hours of the summer
days in each year, and their differences relative to the control group. The values in bold are
expected to be less than 0.021 in absolute value.

Average hourly usage Subtract control

year T-1 T T+1 T-1 T T+1
Control | 1.128 | 1.205 | 1.197
Passive | 1.100 | 1.152 | 1.154 | -0.028 | -0.053 | -0.043
Active | 1.125 | 1.160 | 1.173 | -0.003 | -0.045 | -0.024

Table 2: The hourly electricity usages for three groups averaged over the peak-demand hours
of the summer days in each year, and their differences relative to the Control group. In later
discussions, these average usage values measured by the smart meters are referred to as M

—1, M, and M 41.

Average hourly usage Subtract control

year T-1 T T+1 T-1 T T+1
Control | 1.790 | 1.973 | 1.937
Passive | 1.742 | 1.822 | 1.818 | -0.048 | -0.151 | -0.119
Active | 1.752 | 1.696 | 1.739 | -0.038 | -0.277 | -0.198

3.3 Comparison against the control group

In the tradition of randomized controlled trials, our dataset contains a control group. This
control group is a valid counterfactual group and can provide a baseline for group-wise
comparisons using a Randomized Encouragement Design (RED) evaluation methodology
[Todd et al,, 2012]. However, we are interested in developing a new baseline methodology
that does not rely on a randomized control group [Horwitz and Feinstein, 1979, Liddle et
al, 1996]. We are interested in developing such a methodology for two reasons: (i) we
would eventually like to use our technique to build a baseline for each household
individually, which necessitates the development of new baseline models that do not rely
on a control group counterfactual; (ii) it is often the case that programs, such as the pricing
programs used in this paper, are implemented by electricity providers without a
randomized evaluation methodology. It is often the case that randomization is either
impractical, too expensive, or hampered by regulatory requirements. For this reason, it is
extremely valuable to have a methodology that can be used to evaluate program
effectiveness without relying on randomization. Therefore, we will be using this dataset in
order to demonstrate such a methodology. We will use the control group as a comparison



group in order to validate the baseline methodology we develop, but will use only the
households in the treatment group that self-selected into treatment. If these households
were compared directly to the control group, one would be concerned about self-selection
bias. Using an accurate baseline methodology is one potential way to avoid such a bias, by
allowing for the estimation of the effect of the pricing scheme within those households that
self-selected into the study.

Looking first at the broad changes in consumption across the groups. Tables 1 and 2
contain the average hourly electricity consumption for all hours of a day and peak-demand
hours, respectively. The values in Table 1 is averaged over all hours and all days of the
summer months in each year, while the values in Table 2 is averaged over the peak-
demand hours of each summer day. From these numbers, we see that the average hourly
usages are higher in year T and year T+1. However, the increases of the two treatment
groups are smaller than that of the control group. Relative to the control group, the
treatment groups have reduced electricity consumption. This is particularly true during the
peak-demand hours as shown in Table 2. These observed changes match the design goal of
the new pricing schemes.

In order to underline why a baseline method such as the one we develop is needed, we
show here the extent of the self-selection bias that exists if one were simply to compare the
self-selected treatment households to the control households. To do this we examine if the
differences in year T-1 (before the introduction of the treatments) are within the expected
confidence intervals.

The standard deviations of hourly usage values for all households are all about 0.85 (KWh)3
and each of the group has about 1600 households, therefore, we expect the confidence
interval of the these average values to be about 0.85/ 1600 = 0.021. For a control group to
be considered as properly selected, the differences between the various groups before the
introduction of the treatments should be less than 0.021, however among the two relevant
difference values in year T-1 only one has a absolute value less than 0.021 in Table 1. This
suggests that the three groups are not well randomized, and self-selection bias of the
treatment groups could be strongly present in the data. We propose that the baseline
method we develop is a solution to this problem.

3.4 Differences among the groups

Next we directly compare the time series of the average hourly usage of each group to
understand their differences. For this test, we have selected to compare time series with
the Kolmogorov-Smirnov test (KS test) [Conover and Conover, 1980]. Given two time
series, the KS test measures the distance between their cumulative distribution functions
(CDFs) and produces a score between 0 and 1. In many applications, when this score is
greater than 0.05, the two input time series are considered as following the same

3 The actual values are 0.83 for Year T-1, 0.85 for year T, and 0.91 for year T+1.



distribution (or loosely, the “same”).

Table 3: KS test scores for comparing the hourly electricity time series over three summers.
When the KS score is larger than 0.05, the two time series are considered as likely to be
generated from the same probability density distribution.

year T-1 year T year T+1

Control v. Passive 0.09 0.03 0.02
Control v. Active 0.01 0.04 0.04
Passive v. Active 0.09 0.02 0.03

Table 3 shows KS test results for each of the three years. In year T-1, where all groups
receives the same pricing scheme, we expect the control group to behave similar to the
control groups. In terms of KS test scores, we expect all three KS test scores to be greater
than 0.05. However, the control group is clearly different from the active group (because
the KS test comparing the two time series has a score less than 0.05), even though the
difference between average values of these two time series are fairly close to zero as shown
in Table 1. Combining the values from these tables, we have plenty of evidences to suspect
that the three groups are not well randomized and the self-selection bias might be
prevalent.

The KS test scores for year T and year T+1 are all less than 0.05, which indicate that the
time series of hourly electricity usages should be considered different. These differences
could possibly be extracted and attributed to the price differences and consumer behavior
differences.

4 Methodology

The statistics provided in the previous section suggest that the groups in this study might
not be well randomized and therefore the control group might not be a good baseline for
comparison. This is one motivation for our attempt at developing alternative baseline
models. The second motivation for considering alternative baseline models is that we
would like to eventually develop a model that is suitable for studying each individual
household, but the randomized control group is only a good baseline for the average
behavior of a treatment group, not individual households. In this section we first introduce
a few black-box approaches and then introduce a white-box approach. The black-box
methods are three statistical machine learning methods: linear regression, gradient linear
boosting, and gradient tree boosting. The white-box method is named LTAP.

4.1 Linear Regression

One of popular and simple regression models is the linear regression (LR) where a model is
represented in the form of linear equations. Multiple LRs can be used to forecast electricity

consumption of house- holds [Bianco et al,, 2009]. Given a data set {y;, xj 1, ..., Xi,K}ni=1 of
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n statistical units, an LR can be represented as follows:

K
Pi=e+ ) Bxi (1)
k=1

where J; is an estimated value of y;, By is a kth regression coefficient of x; i, and € is a bias.

Temperature
<44.25

Usage of yesterday OM Qs
<1.8125 + d Q + + 0
QOO0 0000
Dew point
< 49512

Figure 3: An example of Gradient Tree Boosting (GTB) model. The directed arrow represents a
possible path of a sample during the test. Each decision tree decides which path a sample
should traverse. Values of leaf nodes are summed to get the prediction.

4.2 Gradient Linear Boosting and Gradient Tree Boosting

Boosting is a prediction algorithm derived from machine learning literature based on the
idea of combining a set of weak learners to create a single strong learner. The boosting
method has attracted much attention due to its performance on various applications in
both machine learning and statistics literature [Schapire, 1990, Freund et al., 1996,
Schapire and Freund, 2012].

Gradient Boosting (GB) is one of the boosting methods, which constructs an additive
regression model by sequentially training weak learners in the gradient descent viewpoint
[Friedman, 2001]. GB can be further distinguished by choosing different week leaners. Here
we choose two different weak learners: linear function and decision tree. Each model is
called Gradient Linear Boosting (GLB) and Gradient Tree Boosting (GTB) respectively.* Fig.
3 shows an example of binary decision trees where each arrow shows a possible path of a
sample during testing.

In general, GB can be represented as follows:

4+ XGBoost library (https://github.com/dmlc/xgboost) is used in this paper.

11
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where K is the number of weak learners, fi is a function (linear function or decision tree) in
the functional space F which is the set of all possible regression functions, x; is an input
value from a training set, and j; is the estimation of an output value y; from the training set.

The objective of GB is to minimize the following objective function obj(:) of ® which
denotes the parameters of GB:

0bj(8) = L(®) + ) 0(fy) )
k=1

where L(+) is a training loss function, ()(+) is a regularization term. Specifically, we use the
root-mean-square error (RMSE) as the training loss function L(-) which is written as:

Lo = jzzl:l(yi - 9° “

n

where n is the number of elements in the training set. We employ hourly training datasets
(xjy;) for experiments.

4.3 Linear Relation between Temperature and Aggregated Power (LTAP)

Next, we describe the white-box model that is effective in our tests. It is well-known that
the electricity consumption depends on temperature [Fels, 1986]. Generally, this
relationship is between the electricity usage of a whole day and the average temperature of
that day [Rabl and Rialhe, 1992, Bacher and Madsen, 2011, Borgeson, 2014]. In this work,
we propose a simple strategy to make predictions of hourly usage based on this
relationship between the daily electricity usage and the average daily temperature. Next,
we provide a brief explanation of the rationale for this method before describing the
method.

As we see from Figure 2, the relationship between outdoor temperature and the hourly
electricity usage is complex, but the daily electricity usage and the average outdoor
temperature is relatively straightforward. Since this work is primarily concerned about the
peak usages during the summer when air conditioner uses cause the electricity demand to
peak in the later afternoon. From the earlier studies on the residential electricity usage, we
know there is a significant amount of constant demands from refrigerators, electric water
heaters, water pumps, and so on. We assume that this constant usage is the minimum
hourly usage during a day and is fixed during the summer season being considered for this
work. The usage that is beyond the minimum varies from hour to hour, we call this portion

12



the variable electricity usage. For the region where this data is from, we assume the
primary demand for this variable usage is from the air conditioners and therefore is related
to the outdoor temperature.

The reason that the daily variable electricity usage is likely a simple function of the average
daily temperature can be stated as follows. The higher outdoor temperature causes heat to
enter into a house and increases the indoor temperature. When the indoor temperature
rises to a certain threshold, the air conditioner starts to cool the room. There is a delay
between the rise of outdoor temperature and the rise of the indoor temperature because of
the insulation of the house, however, during the warm period of the day, the higher the
average temperature causes more heat to enter the house, and more electric power is
needed to cool the house. Therefore, we expect the aggregate variable electricity usage per
day to have a relatively simple relation with the average outdoor temperature. From the
research literature and our own tests presented in the next section, we see that this is true.
In fact, we have a set of linear functions relating the aggregate variable electricity usage
and the average outdoor temperature. We will use these linear relationships to forecast the
total variable electricity usage from the reported outdoor temperature values.

To distribute the aggregate daily usage to hourly usage values, we make the simple
assumption that the profile of daily usage per household remains the same, and scale the
variable hourly electricity usage proportional to the change in the aggregated usage. Next,
we give a more precise definition of the procedure we call LTAP.

Given a summer day in year T or year T+1, we compute the average temperature ¢ of the

day from the hour temperature values. Call this the prediction day. Look for a summer day
in year T-1 with the closest average temperature t(. Call this day the reference day. Let the

24 hourly electricity usage be hgli],i =1, ...,23. Let by = min hg[i] and ay = Y. (heli] — by).
Let s denote the slope of the linear relation between ap and ty. We compute aj as follows

a; = ag +s(t; — to) (5)
We assign the hourly electricity usage as follows

hi[i] = by + (holi] — bo)a;/a, (6)

13



Table 4: RMSE for Three Different Models: Linear Regression (LR), Gradient Linear Boosting
(GLB), And Gradient Tree Boosting (GTB).

LR | GLB | GTB
Control | 1.841 | 0.952 | 0.845
Passive | 1.862 | 0.951 | 0.838
Active | 1.731 | 0.957 | 0.839

It is easy to verify that the above assignment of the aggregated electricity usage to each
hour preserves the shape of the daily usage profile while giving the correct total usage
value as predicted by Equation 5. Furthermore, this prediction algorithm does not involve
any explicit values of days and therefore can be applied to any day.

5 Black-box Regression Models

To establish our baseline, we need to first determine the features that this model depends
on. From information in the literature and our exploration of the dataset, we choose 8
features: 3 time variables (month, hour, and day of week), 2 historical electricity usage
variable (electricity usage of the same hours on a day before (yesterday) and a week
before), and 3 hourly averaged weather conditions (temperature, atmospheric pressure,
and dew point). The role of the historical usage data is to distinguish each household from
others. Here, the weather data vary only over time, not across households, since all
households belong to a geo- graphical region covered by a single weather station. Although
some weather data such as the atmospheric pressure and the dew point do not seem to
play major roles at first glance, we also want to take them into account to see whether
there is a latent correlation between these data and electricity usage.

5.1 Errors of the models

We explore three different models: LR, GLB, and GTB, described in Section 4, and plan to
choose a single model that best represents the core behavior. Specifically, we trained the
three models with the usage data in T - 1 by randomly sampling 70% of data as a training
set and using the remaining 30% of data as a test set. In the case of GLB and GTB, we
trained 1,000 decision trees for a single GTB. If the sum of child nodes’ weights was less
than 2, we kept partitioning a tree before the max depth of tree surpassed 5. For each step,
we randomly collected half of the data set and shrink the feature weights to 0.3 so as to
avoid over fitting. These parameters were provided by XGBoost package and we tuned
hyper parameters using 5-fold cross-validation with a grid-search method in the parameter
spaces.

Table 4 shows the result of RMSE for the three models. We see that the errors of LR, GLB
are larger than GTB. This is not unexpected since the relationship between electricity usage
and temperature is not only non-linear but also delayed. In this work, we choose GTB to
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extract the baseline.
5.2 Training Gradient Tree Boosting

Our goal is to predict residential electricity consumption with a model that captures the
effect of outdoor temperature, including its delayed effect. To achieve this goal, we trained
a GTB model with the usage data of T - 1 for all households regardless of their groups.
Again we randomly sampled 70% of the data as a training set and used the remaining 30%
as a test set.

Fig. 4 shows f-score of each feature in GTB, where the f-score is the number of appearances
of a feature in all of weak decision trees in GTB. If the f-score of one feature is higher, the
feature is more important than other features. The two most powerful features are
historical electricity usage data (yesterday and week before usage) and the third most
influential feature is temperature. In Fig. 4, we can see how GTB finds which features are
important. It is also interesting to note that ‘day of week’ is not as effective as other
features, because we originally assumed that GTB might detect the difference between
weekend and weekday from the dataset.
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Figure 4: F-score representing the importance of a feature in the decision trees of GBT, which
is calculated by counting the appearance of a feature.

5.3 Hourly Averaged Prediction

Fig. 5 shows the hourly usage prediction by GTB and hourly average temperature of
different groups. In year T and T + 1, we see that the control group uses slightly more
electricity than predicted by GTB model, while the treatment groups use less electricity,
especially during the peak-demand hours, than the predictions by GTB models.
Furthermore, we see that the points representing the measured usages are noticeably
below the lines representing the predictions. Clearly, the new pricing scheme has an impact
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on the consumer behavior, and the active group has responded more than the passive

group. We also see that the GTB model effectively has learned the lagged effect of
temperature explained in Fig. 2.
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Figure 5: Predicted (by GTB) and measured hourly average electricity usage during year T
and T+1. The lines and symbols represent data from the same year have the same color. The
measured values are lower than the predictions indicating the consumers have reduced
electricity uses compared to the “business-as-usual” predictions.
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5.4 Modifying GTB for continuous prediction

The features used for our GTB model include the electricity usage from a day ago and a
week ago. The current implementation of GTB requires these values to be supplied
together with other values that are known beforehand. In the training steps where all the
values from year T-1 are considered known values, we should be able to supply the values
of these lagged variables as well. However, when making predictions for the future, say for
year T, the prediction mechanism is expected to treat electricity usage values as unknown,
therefore, the usage values of a day ago and a week ago are only available as more
predictions are made. We have modified the GTB prediction procedure to make predictions
one day at a time, and use the predicted values for the day ago and week ago usage values.
This modified version of prediction procedure as the sequential prediction since it makes
predictions one day at a time and immediately make uses of the predicted values.

Fig. 6 shows an attempt to make prediction for a month of time using the above procedure
of continuous prediction. We note that as time progresses, the maximum values in each
graph gradually increases. This appears to be an accumulation of the some sort of
prediction errors over time. Typically, predictions are only made for a small number of
steps beyond the end of the known time series; however, to establish a baseline for years
requires us to make predictions many time steps beyond the end of the known time series.
To remedy this problem, we could avoid using lagged variables as features or devise
“stable” prediction methods that would not accumulate prediction errors. The LTAP
method is a strategy that only makes use of the temperature, and avoid building up new
predictions from previous predictions.

Table 5: The slopes and the coefficients of correlation for data points with average

temperature above 65°F from the summer of year T-1.

slope coeff of corr

Control 1.13 0.92
Passive 1.07 0.92
Active 1.02 0.91

Table 6: The averaged (over all hours) hourly usage predicted by LTAP and their differences
from the actual measurements.

group Dt | Dryy | My — Pr | Mry1 — Pryg
Control | 1.185 | 1.220 0.020 -0.023
Passive | 1.156 | 1.193 -0.004 -0.038
Active 1.181 | 1.211 -0.021 -0.038
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Figure 6: Predicted electricity usage with a modified version of Gradient Tree Boosting (GTB)
that uses previous predictions as lagged variables. This is for the Znd month of the summer,
we see the predicted usages are higher than normal at the beginning of the month and
continue to grow over time.

6 White-box Prediction

In Section 4.3, we describe the white-box prediction called LTAP. In this section, we first
provide evidence that the assumed linear relationship between the aggregated variable
electricity usage and the average daily temperature is valid, and then describe the results of
predictions with LTAP.
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6.1 Linear relationship between aggregated power usage and
temperature

In Section 4.3 we provide some arguments for the a linear relationship between the
aggregated variable electricity usage and average daily temperature. Figure 7 and Table 5
provide some empirical support for these arguments. In Figure 7, we provide scatter plots
of the aggregated variable electricity usage against the average daily temperature. These

scatter plots suggest that below 65°F, there is no obvious relationship between the
electricity usage and temperature, however, at higher temperatures there is clearly a linear
relationship between electricity usage and temperature. When more seasons are
considered, there are more variety of relationships between electricity and temperature
[Rabl and Rialhe, 1992, Bacher and Madsen, 2011, Borgeson, 2014], however, since we are
only studying the electricity usage in the summer season of a region where air conditioning
is heavily used, it is unsurprising that we observe a simpler relation between temperature
and electricity usage.

What is somewhat surprising is that coefficients of correlation in all three groups are above
0.9, which indicates the linear relationship is very strong. Therefore, we should expect this
linear function could be used to make accurate predictions about the electricity usage in
year T and year T+1.

6.2 LTAP prediction results

The test results in the previous section clearly establishes that the relationship between the
aggregated electricity usage and the average temperature to be piece-wise linear, therefore
we could attempt to use the LTAP prediction method. This method captures the impact of
the temperature, which appears to be the most reliable feature that could be used to make
predictions. Other factors we initially suspected to be impactful, such as the day of the
week, have found to be less important. At this time, we only use the temperature as the
feature variable for predictions.

Figure 8 shows hourly electricity demand averaged over all summer days in year T and
year T+1. In the figure, lines are used to present the predicted values by LTAP, and the
individual points are used for actual measured values. Overall, we see that the largest
differences appear during the peak-demand hours, where the predicted usage and the real
usage are about the same for the control group, while the active groups clearly reduced the
usage during the peak-demand hours and the passive group also reduced their usages but
not as significantly.

Tables 6 and 7 provide more quantitative measures of the reduction in electricity demand.
The LTAP baseline predictions are able to capture the impact of temperature, we can
regard the difference between the predicted values and the actual measurements as the
“true” measure of energy reduction due to the new pricing schemes. Overall, we see the
impact of the new pricing scheme on the overall daily usage is relatively small, while the
impact on the usage during peak-demand hours is quite significant.
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Table 7: The average hourly electricity demand during peak-demand hours and their
differences from the actual measurements. The predictions are made with LTAP.

group Pr | Pryy | My — Pr | Mpyy — Pry
Control | 1.960 | 2.052 0.013 -0.116
passive2 | 1.904 | 1.998 -0.081 -0.180
Active 1.910 | 1.990 -0.214 -0.251

From Table 7 we see that the active group is able to reduce their usage during the peak-
demand hours much more than the passive groups. The reduction by the active groups
during the peak-demand hours reaches almost 20%, which is very significant. There are
some households that reduce the usage during peak-demand hours by as much as 40%.
This indicates that the new pricing structure is effective in reducing electricity usage
during peak-demand hours. It is possible that these active participants choose to opt in
because they are better able to respond to the incentives provided by new pricing scheme.

A unexpected observation from this table is that all groups reduced electricity usage in year
T+1, even the control group. This particular change in the behavior of the control group
appears to explain the decreases in the reduction observed in year T+1 in Table 2. Based on
he values in Table 2, we have speculated that the decrease in reduction of electricity usage
indicates the active participants have become tired of responding to the changing price
during the day. The new baseline with LTAP seems to suggest a new interpretation of the
consumer behavior. The control group must have heard about the new behavior of the
active participants and started to mimic their behavior even though there is no incentive
for them to do so.

7 Summary and Future Work

We set out to study options of derive baseline models from data because the randomized
control group is hard to design and is even impossible in some cases. Ultimately, we would
like to design a strategy that could generate baseline models for individual participants of a
study, while the randomized control group can only serve as the baseline for a whole
group. For this work, we have chosen a data set from a well-designed field study of
residential electricity usage because it contains a control group that we could compare our
baseline model against.

In this work, we explored a number of black-box approaches such as linear regression and
Gradient Boosting. Among these machine learning methods, we found Gradient Tree
Boosting to be more effective than others. However, the most accurate GTB models are
produced with lagged variables as features, for example, the electricity usage a day before
and a week before. In order to use the model established on data from year T-1 to make
predictions for year T, the existing structure of the prediction procedure effectively
requires the actual usage data from year T in order to make predictions for values in year
T. We have at- tempted to modify the prediction procedure to use the recently predictions
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in place of the actual measured values, however the tests show that the prediction errors
accumulated over time, leading to unrealistic pre- dictions a month or so into the summer
season. This type of accumulation of prediction errors is common to sequential prediction
procedures for time series.

To address the above difficulty, we devised a number of white-box approaches. The method
known as LTAP is reported here. It is based on the fact that the aggregated variable
electricity usage per day is accurately described by a piece-wise linear function of average
daily temperature. This fact allows us to make predictions about the total daily electricity
usage. By assuming the usage profile remains the same during the study, we are able to
assign the hourly usage values from the aggregated daily usage. This approach is shown to
be self-consistent, that is the prediction procedure exactly reproduces the electricity usage
in year T-1 and the prediction for the control in year T is very close to the actual measured
values. As one might expect, both treatment groups have reduced electricity usage during
the peak-demand hours and the active group reduced the usage more than the passive

group.

The analysis results also contain a unexpected revelation, the control group actually
reduced its electricity usages in year T+1, the second year after the introduction of the new
pricing structures. Previously, using the randomized control group as the baseline,
researchers have concluded that there was a decrease in the reduction of the electricity
usage during the peak-demand hours. This decrease might be an indication that the new
pricing scheme has lost its attractiveness. The new analysis results suggest alternate
possibilities, for example, households might have acquired more energy efficient air
conditioners, the change the fixed rate at the beginning of year T+1 might have make the
consumers more concerned about their electricity usage, or participants of the control
group might have adapted the behavior of the treatment groups.

The above hypothesis should be investigated and we are interested in further verify the
effectiveness of LTAP. One way to improve LTAP might be to capture additional features,
such as the day of the week and so on. So far, we have only considered the average usages
of groups, LTAP could be used to make prediction of individual household. We plan to
exercise this feature, which might provide additional ways to verify the new baseline
model. From our tests on GTB, we noted that the prediction errors seem to accumulate
over time, it is of great theoretical interest to study sequential prediction methods that
would not accumulate prediction errors over time.
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